Analyzing Vehicle Fuel Saving Opportunities through Intelligent Driver Feedback
نویسندگان
چکیده
While it is well known that “MPG will vary” based on how one drives, little independent research exists on the aggregate fuel savings potential of improving driver efficiency and on the best ways to motivate driver behavior changes. This paper finds that reasonable driving style changes could deliver significant national petroleum savings, but that current feedback approaches may be insufficient to convince many people to adopt efficient driving habits. To quantify the outer bound fuel savings for drive cycle modification, the project examines completely eliminating stop-and-go driving plus unnecessary idling, and adjusting acceleration rates and cruising speeds to ideal levels. Even without changing the vehicle powertrain, such extreme adjustments result in dramatic fuel savings of over 30%, but would in reality only be achievable through automated control of vehicles and traffic flow. Considering the effects of real-world driving conditions, efficient driving behaviors could reduce fuel use by 20% on aggressively driven cycles and by 5-10% on more moderately driven trips. To evaluate potential receptiveness to changing driving habits, the project team conducted a literature survey of driver behavior influences and observed pertinent factors from on-road experiments with different driving styles. This effort highlighted important driver influences such as surrounding vehicle behavior, anxiety over trying to get somewhere quickly, and the power/torque available from the vehicle. Existing feedback approaches often effectively deliver efficiency information and instruction, but do not always do so in an easy way that avoids unintended consequences and helps trump other driving behavior influences. Based on these findings the report details three recommendations for maximizing fuel savings from potential drive cycle improvement: (1) Leverage applications with enhanced incentives, (2) Use an approach that makes it easy and is widely-deployable to motivated drivers, and (3) Utilize connected vehicle and automation technologies to achieve large and widespread efficiency improvements.
منابع مشابه
A Digital-Driving System for Smart Vehicles
human driver or control the vehicle autonomously, they usually must make these decisions in real time with only incomplete information. So, human drivers still must maintain control over the vehicle. Advanced in-vehicle information systems (IVISs) endow vehicles with different types and levels of intelligence to complement the driver.2 Their introduction has allowed an almost symbiotic relation...
متن کاملReal-Time Velocity Optimization to Minimize Energy Use in Passenger Vehicles
Energy use in internal combustion engine passenger vehicles contributes directly to CO2 emissions and fuel consumption, as well as producing a number of air pollutants. Optimizing the vehicle velocity by utilising upcoming road information is an opportunity to minimize vehicle energy use without requiring mechanical design changes. Dynamic programming is capable of such an optimization task and...
متن کاملVehicle control system implementation Using CAN protocol
Present Automobiles are being developed by more of electrical parts for efficient operation. Generally a vehicle was built with an analog driver-vehicle interface for indicating various vehicle status like speed, fuel level, Engine temperature etc., This paper presents the development and implementation of a digital driving system for a semi-autonomous vehicle to improve the driver-vehicle inte...
متن کاملOptimal Intelligent Control of Plug-in Fuel Cell Electric Vehicles in Smart Electric Grids
In this paper, Plug-in Fuel Cell Electric Vehicle (PFCEV) is considered with dual power sources including Fuel Cell (FC) and battery Energy Storage. In order to respond to a transient power demand, usually supercapacitor energy storage device is combined with fuel cell to create a hybrid system with high energy density of fuel cell and the high power density of battery. In order to simulate the...
متن کاملDriver Assistance: Contemporary Road Safety
Despite a trend towards increased road safety, fatal and/or serious accidents induce a significant toll each year. We work towards improved road safety through the development of an intelligent driver assistance system that monitors the driver’s performance and assists with vehicle guidance. This complex task is decomposed into subsystems including lane-keeping, obstacle avoidance, sign detecti...
متن کامل